
DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 2002 Jun 17 2002 Oct 02

FEATURES

- High power gain
- Easy power control
- Excellent ruggedness
- Source on mounting base eliminates DC isolators, reducing common mode inductance.

APPLICATIONS

• Avionics transmitter applications in the 1030 to 1090 MHz frequency range.

DESCRIPTION

Silicon N-channel enhancement mode lateral D-MOS transistor encapsulated in a 2-lead flange package (SOT467C) with a ceramic cap. The common source is connected to the flange.

QUICK REFERENCE DATA

RF performance at T_h = 25 °C in a common source test circuit.

MODE OF OPERATION	f	V _{DS}	P _L	G _p	η _D
	(MHz)	(V)	(W)	(dB)	(%)
Pulsed class-AB; $t_p = 50 \ \mu s; \ \delta = 2 \ \%$	1030 to 1090	36	10	>15	>40

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DS}	drain-source voltage		_	75	V
V _{GS}	gate-source voltage		-	±15	V
I _D	drain current (DC)		_	2.2	A
P _{tot}	total power dissipation	$T_h \le 25 \ ^{\circ}C$	-	25	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	200	°C

BLA1011-10

PINNING - SOT467C

PIN	DESCRIPTION
1	drain
2	gate
3	source, connected to flange

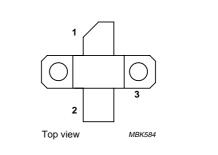


Fig.1 Simplified outline (SOT467C).

BLA1011-10

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
Z _{th j-mb}	thermal impedance from junction to mounting base	T _{mb} = 25 °C; note 1	1.2	K/W
R _{th mb-h}	thermal resistance from mounting base to heatsink	note 2	0.55	K/W

Notes

- 1. Thermal impedance is determined under RF operating conditions with pulsed bias.
- 2. Typical value for SOT467C mounted with thermal compound and 0.6 Nm fastening torque.

CHARACTERISTICS

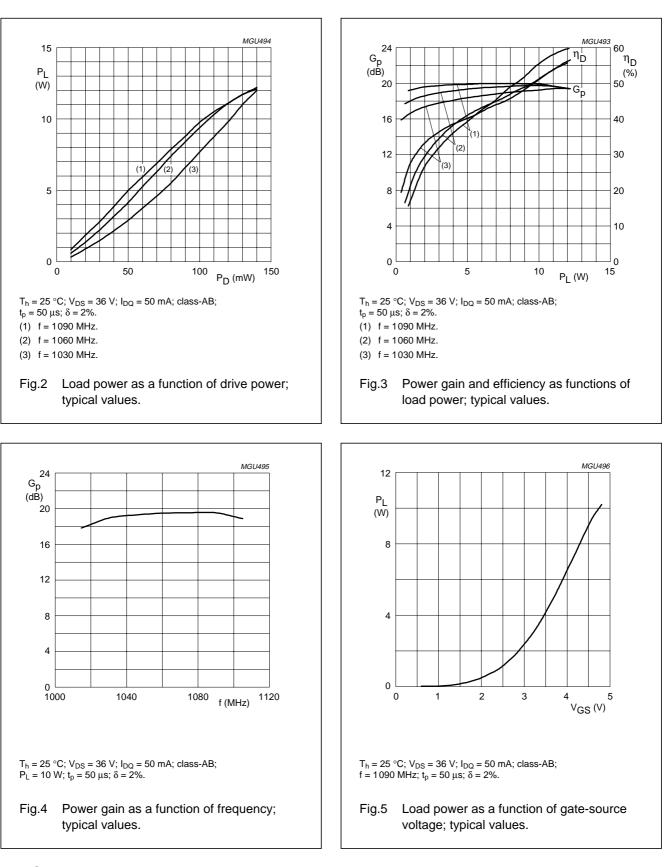
 $T_i = 25 \ ^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{(BR)DSS}	drain-source breakdown voltage	V _{GS} = 0; I _D = 0.7 mA	75	_	-	V
V _{GSth}	gate-source threshold voltage	$V_{DS} = 10 \text{ V}; \text{ I}_{D} = 20 \text{ mA}$	4	_	5	V
I _{DSS}	drain-source leakage current	$V_{GS} = 0; V_{DS} = 28 V$	_	_	0.1	mA
I _{DSX}	on-state drain current	$V_{GS} = V_{GSth} + 9 V; V_{DS} = 10 V$	2.8	-	-	A
I _{GSS}	gate leakage current	$V_{GS} = \pm 15 \text{ V}; V_{DS} = 0$	-	-	40	nA
g _{fs}	forward transconductance	$V_{DS} = 10 \text{ V}; \text{ I}_{D} = 0.75 \text{ A}$	_	0.5	-	S
R _{DSon}	drain-source on-state resistance	V _{GS} = 10 V; I _D = 0.75 A	_	1.2	-	Ω

APPLICATION INFORMATION

RF performance in a common source class-AB circuit. T_h = 25 °C; R_{th mb-h} = 0.55 K/W unless otherwise specified.

MODE OF	f	V _{DS}	I _{DQ}	P _L	G _p	η _D	t _r	t _f	PULSE DROOP
OPERATION	(MHz)	(V)	(mA)	(W)	(dB)	(%)	(ns)	(ns)	(dB)
Pulsed class-AB; $t_p = 50 \ \mu s; \ \delta = 2\%$	1030 to 1090	36	50	10	>15	>40	<20	<20	<0.5


Ruggedness in class-AB operation

The BLA1011-10 is capable of withstanding a load mismatch corresponding to VSWR = 5: 1 through all phases under the operating conditions.

Typical impedance values

FREQUENCY (MHz)	Z _S (Ω)	Ζ L (Ω)
1030	1 + j 10.6	4.3 + j 7
1060	1.3 + j 6.99	5.99 + j 13.98
1 0 9 0	1.42 + j 7	7 + j 11.58

BLA1011-10

BLA1011-10

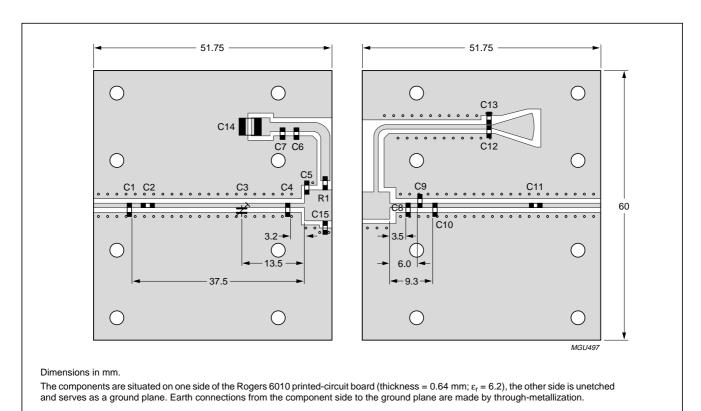


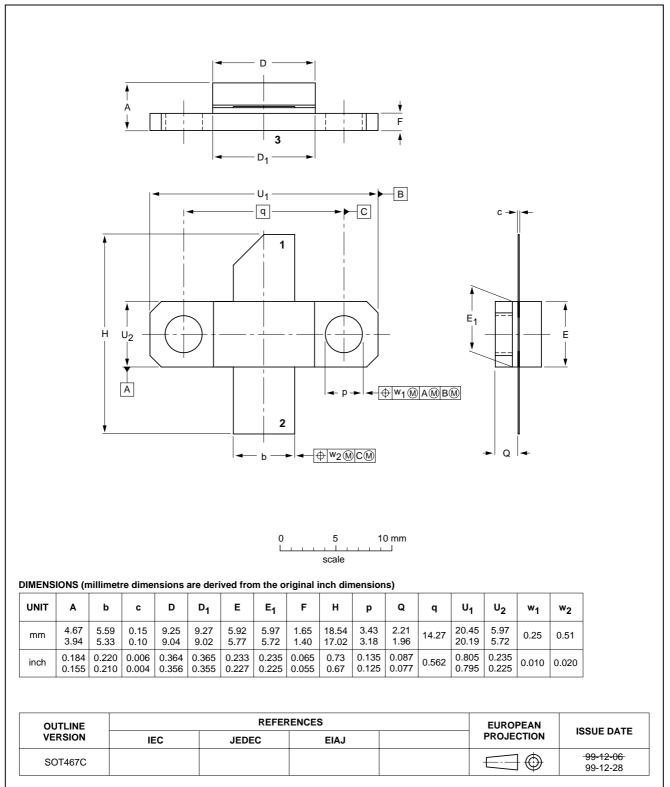
Fig.6 Printed-circuit board for class-AB test circuit.

List of components for class-AB test circuit (see Fig.6)

COMPONENT	DESCRIPTION	VALUE
C1	multilayer ceramic chip capacitor; note 1	2.7 pF
C2, C11	multilayer ceramic chip capacitor; note 1	56 pF
C3	tekelec trimmer; type 37293	0.8 to 8 pF
C4	multilayer ceramic chip capacitor; note 1	3.6 pF
C5	multilayer ceramic chip capacitor; note 1	6.2 pF
C6	multilayer ceramic chip capacitor; note 1	2 pF
C7, C13	multilayer ceramic chip capacitor; note 1	62 pF
C8	multilayer ceramic chip capacitor; note 1	11 pF
C9	multilayer ceramic chip capacitor; note 1	1.5 pF
C10	multilayer ceramic chip capacitor; note 1	6.2 pF
C12	multilayer ceramic chip capacitor; note 2	20 nF
C14	electrolytic capacitor	4.7 μF; 50 V
C15	multilayer ceramic chip capacitor; note 1	36 pF
R1	SMD resistor (0805)	22 Ω

Notes

- 1. American Technical Ceramics type 100A or capacitor of same quality.
- 2. American Technical Ceramics type 200B or capacitor of same quality.


SOT467C

Avionics LDMOS transistor

BLA1011-10

PACKAGE OUTLINE

Flanged LDMOST ceramic package; 2 mounting holes; 2 leads

BLA1011-10

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾⁽³⁾	DEFINITION
1	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
11	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

CAUTION

This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613524/04/pp8

Date of release: 2002 Oct 02

Document order number: 9397 750 10252

SCA74

Let's make things better.

Philips Semiconductors